8.

If the median to a side of a Δ is also an altitude to that side, then the Δ is isosceles.

Given:

Prove:

Statements
Reasons
(1)
9.

Prove that the line segments joining the vertex \angle of an isosceles \triangle to the trisection points of the base are \cong.

Given:

Prove:
11.

Prove that if $2 \Delta \mathrm{~s}$ are \cong, then any pair of corresponding medians are \cong.

Given:

Prove:

Statements
Reasons

12.

Prove that if a Δ is isosceles, then the Δ formed by its base and the \angle bisectors of its base $\angle s$ is also isosceles.

Given:

Prove:
13.

Prove that if each pair of opposite sides of a 4-sided figure \cong, then the segments joining opposite vertices bisect each other.

Given:

Prove:

Statements
Reasons
14.

Prove that if a point on the base of an isos. Δ is equidistant from the midpoints of the legs, then that point is the midpoint of the base.
Given:

Prove:

Statements
Reasons

